
References
Amino acids - Proline. (n.d.). Retrieved March 15, 2021, from
http://www.biology.arizona.edu/biochemistry/problem_sets/aa/proline.html
​
Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., & Prinzen, F. W. (2005). Adaptation to mechanical load
determines shape and properties of heart and circulation: The CircAdapt model. American Journal of Physiology-
Heart and Circulatory Physiology, 288(4), H1943–H1954. https://doi.org/10.1152/ajpheart.00444.2004
​
Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and scaffolds: A winning combination for tissue
engineering. Frontiers in Bioengineering and Biotechnology, 3, 202. https://doi.org/10.3389/fbioe.2015.00202
​
Bella, J., Liu, J., Kramer, R., Brodsky, B., & Berman, H. M. (2006). Conformational effects of Gly–X–Gly
interruptions in the collagen triple helix. Journal of Molecular Biology, 362(2), 298–311.
https://doi.org/10.1016/j.jmb.2006.07.014
​
Berglund, J. D., Nerem, R. M., & Sambanis, A. (2004). Incorporation of intact elastin scaffolds in tissue-engineered
collagen-based vascular grafts. Tissue Engineering, 10(9), 1526–1535. https://doi.org/10.1089/1076327042500427
​
Bowes, J. H., & Kenten, R. H. (1950). The swelling of collagen in alkaline solutions. 1. Swelling in solutions of
sodium hydroxide. The Biochemical journal, 46(1), 1–8. https://doi.org/10.1042/bj0460001
​
Brahatheeswaran, D., Yoshida, Y., Maekawa, T., & Sakthi Kumar, D. (2011). Polymeric scaffolds in tissue
engineering application: A review. International Journal of Polymer Science,
2011. https://doi.org/https://doi.org/10.1155/2011/290602
​
Brannon, H. (2020, July 31). The effects of sun on the skin. Verywell Health.
https://www.verywellhealth.com/effects-of-sun-on-the-skin-1068724
​
Callister, W. and Rethwisch, D., 2014. Materials Science and Engineering: An Introduction. 9th
ed. John Wiley & Sons, Inc.
​
Carbohydrates, Lipids, and Proteins. (n.d.). Wadsworth K12. Retrieved March 13, 2021, from
https://www.wadsworth.k12.oh.us/userfiles/-16/my%20files/c,%20l,%20p%20notes%20no%20pictures.pdf?
id=472
​
Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific
considerations. European spine journal : official publication of the European Spine Society, the European Spinal
Deformity Society, and the European Section of the Cervical Spine Research Society, 17(Suppl 4), 467–479.
https://doi.org/10.1007/s00586-008-0745-3
​
Chen, Q. Z., Harding, S. E., Ali, N. N., Jawad, H., & Boccaccini, A. R. (2007). Cardiac tissue engineering. In Tissue
Engineering Using Ceramics and Polymers (pp. 335–356). Elsevier.
http://dx.doi.org/10.1533/9781845693817.2.335
​
Collagen A. (n.d.). Sigma-Aldrich. Retrieved March 14, 2021, form
https://www.sigmaaldrich.com/catalog/product/sigma/l7220?lang=en®ion=US
Collagen from rat tail tendon. (n.d.). Sigma-Aldrich. Retrieved March 14, 2021, form
https://www.sigmaaldrich.com/catalog/product/roche/11179179001?lang=en®ion=US
Collagen from bovine achilles tendon. (n.d.). Sigma-Aldrich. Retrieved March 14, 2021, form
https://www.sigmaaldrich.com/catalog/substance/collagenfrombovineachillestendon12345900734511?
lang=en®ion=US
​
Conticello, V. P., & Desai, H. E. C. (2012). Polymer science: A comprehensive reference (pp. 71–103). Newnes.
https://www.sciencedirect.com/science/article/pii/B978044453349400248X
​
Cotton, S. (2010, April). Glycine - Molecule of the Month - April 2010 (HTML version).
http://www.chm.bris.ac.uk/motm/glycine/glycineh.htm
​
Daamen, W., Veerkamp, J., Vanhest, J., & VanKuppevelt, T. (2007). Elastin as a biomaterial for tissue
engineering. Biomaterials, 28(30), 4378–4398. https://doi.org/10.1016/j.biomaterials.2007.06.025
​
Daly, N. (2017, September 11). How ‘Organs on a chip’ will revolutionize medicine. National Geographic.
https://www.nationalgeographic.com/magazine/article/further-health-organ-chip-biomedical-testing
​
Damadzadeh, B., Jabari, H., Skrifvars, M., Airola, K., Moritz, N., & Vallittu, P. K. (2010). Effect of ceramic filler
content on the mechanical and thermal behaviour of poly-l-lactic acid and poly-l-lactic-co-glycolic acid
composites for medical applications. Journal of Materials Science: Materials in Medicine, 21(9), 2523–2531.
https://doi.org/10.1007/s10856-010-4110-9
​
Dong, C., & Lv, Y. (2016). Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New
Perspectives. Polymers, 8(2), 42. https://doi.org/10.3390/polym8020042
​
Elastin. (2021, January 2). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Elastin&oldid=997857654
​
Elastin - An overview. (n.d.). ScienceDirect Topics. Retrieved March 14, 2021, from
https://www.sciencedirect.com/topics/materials-science/elastin
​
Elastin from mouse lung. (n.d.). Sigma-Aldrich. Retrieved March 14, 2021, from
https://www.sigmaaldrich.com/catalog/product/sigma/e6402?lang=en®ion=US
Elastin insoluble powder. (n.d.). Sigma-Aldrich. Retrieved March 14, 2021, form h
https://www.sigmaaldrich.com/catalog/product/sigma/e7402?lang=en®ion=US
​
Eucerin. (2018, October 25). About Skin | Skin’s pH. Eucerin. https://www.eucerinus.com/about-skin/basic-skin-
knowledge/skins-ph
​
EuroStemCell. (n.d.). Explore stem cells | eurostemcell. Retrieved March 13, 2021, from
https://www.eurostemcell.org/landing/explore-stem-cells
​
Fibrillin. (2020, December 23). In Wikipedia. https://en.wikipedia.org/w/index.php?
title=Fibrillin&oldid=995895367
​
Friess, W., & Schlapp, M. (2006). Sterilization of gentamicin containing collagen/PLGA microparticle
composites. European Journal of Pharmaceutics and Biopharmaceutics, 63(2), 176–187.
https://doi.org/10.1016/j.ejpb.2005.11.007
​
Gibbens, S. (2018, March 27). New human “Organ” was hiding in plain sight [Image]. National Geographic.
http://www.nationalgeographic.com/science/article/interstitium-fluid-cells-organ-found-cancer-spd
​
Glorieux, F. H., & Rowe, D. (2012). Osteogenesis imperfecta. Pediatric Bone, 511–539.
https://doi.org/10.1016/b978-0-12-382040-2.10019-x
​
Granta Design Limited. (2020). CES EduPack software. Ansys. Cambridge, UK.
​
Guerrero-Aspizua, S., Conti, C. J., Zapatero-Solana, E., Larcher, F., & Del Río, M. (2016). Current applications for
bioengineered skin. In Translating Regenerative Medicine to the Clinic (pp. 107–120). Elsevier.
http://dx.doi.org/10.1016/b978-0-12-800548-4.00008-5
​
Hamodat, M. (2020, March 19). Skin graft rejection. Pathology Outlines; Pathology Outlines.
https://www.pathologyoutlines.com/topic/skinnontumorskingraftrejection.html
​
Heart Tissue Scaffold Developed at MIT. (n.d.). [Image]. Retrieved March 13, 2021, from https://news-
cdn.softpedia.com/images/news2/Heart-Tissue-Scaffold-Developed-at-MIT-2.jpg
​
Hsu, S. -h., & Chen, C.-W. (2018). 3D bioprinting nerve. In 3D Bioprinting for Reconstructive Surgery (pp. 355–
366). Elsevier. http://dx.doi.org/10.1016/b978-0-08-101103-4.00016-8
​
Huang, Y. X., Ren, J., Chen, C., Ren, T. B., & Zhou, X. Y. (2007). Preparation and properties of poly(lactide-co-
glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs
culture on scaffolds. Journal of Biomaterials Applications, 22(5), 409–432.
https://doi.org/10.1177/0885328207077632
​
Iftikhar, N. (2019, August 16). What’s a Normal Blood pH and What Makes It Change? Healthline Media.
https://www.healthline.com/health/ph-of-blood#changes-in-blood-p-h
​
Imahara, S. D., & Klein, M. B. (2009). Biomaterials for treating skin loss (pp. 58–79). Elsevier.
https://www.sciencedirect.com/science/article/pii/B9781845693633500055
​
Jariashvili, K., Madhan, B., Brodsky, B., Kuchava, A., Namicheishvili, L., & Metreveli, N. (2012). UV damage of
collagen: insights from model collagen peptides. Biopolymers, 97(3), 189–198. https://doi.org/10.1002/bip.21725
​
Kim, S.-S., Sun Park, M., Jeon, O., Yong Choi, C., & Kim, B.-S. (2006). Poly(lactide-co-glycolide)/hydroxyapatite
composite scaffolds for bone tissue engineering. Biomaterials, 27(8), 1399–1409.
https://doi.org/10.1016/j.biomaterials.2005.08.016
​
Kobel, S. A., Lutolf, M. P., & Kolb, L. (2017). Materials as artificial stem cell microenvironments. Comprehensive
Biomaterials II, 2(1), 179–201. Science Direct. https://doi.org/https://doi.org/10.1016/B978-0-08-055294-1.00067-
2
​
Koide, T., & Nagata, K. (2005). Collagen biosynthesis. In Topics in Current Chemistry (pp. 85–114). Springer Berlin
Heidelberg. http://dx.doi.org/10.1007/b103820
​
Kristensen, J. H., & Karsdal, M. A. (2016). Elastin. Biochemistry of Collagens, Laminins and Elastin, 197–201.
https://doi.org/10.1016/b978-0-12-809847-9.00030-1
​
Kristensen, J. H., & Karsdal, M. (2016). Biochemistry of collagens, laminins and elastin: Structure, function and
biomarkers (pp. 197–201). Academic Press.
https://www.sciencedirect.com/science/article/pii/B9780128098479000301
​
Li, L., Charati, M. B., & Kiick, K. L. (2010). Elastomeric polypeptide-based biomaterials. Journal of Polymer
Science. Part A, Polymer Chemistry, 1(8), 1160–1170. https://doi.org/10.1039/b9py00346k
​
Lin, Y. K., & Liu, D. C. (2006). Comparison of physical–chemical properties of type I collagen from different
species. Food Chemistry, 99(2), 244–251. https://doi.org/10.1016/j.foodchem.2005.06.053
​
Lungs. (2015, October 1). In Microbe Wikipedia. https://microbewiki.kenyon.edu/index.php?
title=Lungs&oldid=116542
​
Maher, B. (2013). Tissue engineering: How to build a heart. Nature News, 499(7456).
https://doi.org/doi:10.1038/499020a
​
MIT OpenCourseWare. (2016, October 14). 13. Tissue engineering scaffolds: Processing and properties [Video].
YouTube. https://www.youtube.com/watch?v=Txidu-5VYfU
​
Mohammad, A. W., Suhimi, N. M., Aziz, A. G. K. A., & Jahim, J. M. (2014). Process for production of hydrolysed
collagen from agriculture resources: Potential for further development. Journal of Applied Sciences, 14, 1319–
1323. Science Alert. https://doi.org/10.3923/jas.2014.1319.1323
​
Munhoz, M. de A. e S., Pomini, K. T., Plepis, A. M. de G., Martins, V. da C. A., Machado, E. G., de Moraes, R.,
Cunha, F. B., Santos Junior, A. R., Camargo Cardoso, G. B., Duarte, M. A. H., Alcalde, M. P., Buchaim, D. V.,
Buchaim, R. L., & da Cunha, M. R. (2020). Elastin-derived scaffolding associated or not with bone morphogenetic
protein (BMP) or hydroxyapatite (HA) in the repair process of metaphyseal bone defects. Plos One, 15(4),
e0231112. https://doi.org/10.1371/journal.pone.0231112
​
Nadalian, M., Kamaruzaman, N., Yusop, M. S. M., Babji, A. S., & Yusop, S. M. (2019). Isolation, purification and
characterization of antioxidative bioactive elastin peptides from poultry skin. Food Science of Animal Resources,
39(6), 966–979. https://doi.org/10.5851/kosfa.2019.e90
​
Nature. (2013, July 3). The heart makers [Video]. YouTube. https://youtu.be/pd3TFB0wOI0
​
O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95.
https://doi.org/10.1016/s1369-7021(11)70058-x
​
Orgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ.
Proceedings of the National Academy of Sciences, 103(24), 9001–9005. https://doi.org/10.1073/pnas.0502718103
​
OTT Lab, Massachusetts General Hospital. (2013). A decellularized human heart awaits rebuilding with an injection
of precursor cells [Image]. https://www.nature.com/news/polopoly_fs/7.11286.1372788772!/image/heart_0037.jpg
_gen/derivatives/landscape_300/heart_0037.jpg
​
Panchmatia, M. (n.d.). The effects of UV exposure on ageing. Silhouette Spa and Laser. Retrieved March 13, 2021,
from https://silhouettespaandlaser.com/effects-uv-exposure-ageing/
​
Patel, A., Fine, B., Sandig, M., & Mequanint, K. (2006). Skip Nav Destination Article Navigation Elastin
biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovascular Research, 71(1), 40–49.
​
PCL Scaffold SEM. (n.d.). Retrieved March 13, 2021, from https://external-content.duckduckgo.com/iu/?
u=http%3A%2F%2Fpubs.rsc.org%2Fservices%2Fimages%2FRSCpubs.ePlatform.Service.FreeContent.Image
Service.svc%2FImageService%2FArticleimage%2F2014%2FTB%2Fc4tb00168k%2Fc4tb00168k-f13_hi-
res.gif&f=1&nofb=1
​
Petrella, F., & Spaggiari, L. (2018). Artificial lung. Journal of Thoracic Disease, 10(Suppl 20), S2329–S2332.
https://doi.org/10.21037/jtd.2017.12.89.
​
Prasad, K., Bazaka, O., Chua, M., Rochford, M., Fedrick, L., Spoor, J., Symes, R., Tieppo, M., Collins, C., Cao, A.,
Markwell, D., Ostrikov, K. K., & Bazaka, K. (2017). Metallic biomaterials: Current challenges and
opportunities. Materials (Basel, Switzerland), 10(8), 884. https://doi.org/10.3390/ma10080884
PubChem. (n.d.). Glycine. PubChem. Retrieved March 15, 2021, from
https://pubchem.ncbi.nlm.nih.gov/compound/Glycine
​
PubChem. (n.d.). Hydroxyproline. PubChem. Retrieved March 15, 2021, from
https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxyproline
​
Ratner, B. D., & Bryant, S. J. (2004). Biomaterials: Where we have been and where we are going. Annual Review of
Biomedical Engineering, 6(1), 41–75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027
​
Reid, G., Magarotto, F., Marsano, A., & Pozzobon, M. (2020). Next stage approach to tissue engineering
skeletal muscle. Bioengineering, 7(4), 118. https://doi.org/10.3390/bioengineering7040118
​
Ricard-Blum S. (2011). The collagen family. Cold Spring Harbor perspectives in biology, 3(1), a004978.
https://doi.org/10.1101/cshperspect.a004978
​
Rnjak-Kovacina, J., Daamen, W. F., Orbanić, D., Rodríguez-Cabello, J. C., & Weiss, A. S. (2017). 2.18 Elastin
biopolymers ☆. Comprehensive Biomaterials II, 2, 412–437. https://doi.org/10.1016/b978-0-12-803581-8.10187-
0
​
Ross, R. (2020, January 23). What is collagen? Live Science. https://www.livescience.com/collagen.html
​
Royal Society of Chemistry. (2014). Protein-based materials: from sources to innovative sustainable materials for
biomedical applications. https://external-content.duckduckgo.com/iu/?
u=http%3A%2F%2Fpubs.rsc.org%2Fservices%2Fimages%2FRSCpubs.ePlatform.Service.FreeContent.Image Service.svc%2FImageService%2FArticleimage%2F2014%2FTB%2Fc4tb00168k%2Fc4tb00168k-f13_hi-
res.gif&f=1&nofb=1
Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual review of biochemistry, 78, 929–
958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
​
Sia, S. K., Gillette, B. M., & Yang, G. J. (2007). Synthetic tissue biology: Tissue engineering meets synthetic biology.
Birth Defects Research Part C: Embryo Today: Reviews, 81(4), 354–361. https://doi.org/10.1002/bdrc.20105
Stojic, M., Lopez, V., Montero, A., Quilez, C., Izuzquiza, G. de A., Vojtova, L., Jorcano, J. L., & Velasco, D. (2019).
Biomaterials for Skin Repair and Regeneration (pp. 59–99). Woodhead Publishing.
https://www.sciencedirect.com/science/article/pii/B9780081025468000030
​
Surat, P. (2018, June 13). pH in the Human Body. News-Medical.Net. https://www.news-medical.net/health/pH-in-
the-Human-Body.aspx
​
Szulc, P. (2018). Bone turnover: Biology and assessment tools. Best Practice & Research Clinical Endocrinology &
Metabolism, 32(5), 725–738. https://doi.org/10.1016/j.beem.2018.05.003
​
Thiese, N., & Carr-Locke, D.. (2018). New human “Organ” was hiding in plain sight. Image.
http://www.nationalgeographic.com/science/article/interstitium-fluid-cells-organ-found-cancer-spd. Accessed 13
Mar. 2021.
​
Tomoike H. (1996) Responses of the Heart to Mechanical Stress. In: Hayashi K., Kamiya A., Ono K. (eds)
Biomechanics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68317-9_3
​
UCL, & Brown, R. (2010, May 28). Mini-lecture: Engineering tissue (UCL) [Video]. YouTube.
https://www.youtube.com/watch?v=tF6ccgr8tTw
​
Uitto, J., & Lichtenstein, J. R. (1976). Defects in the biochemistry of collagen in diseases of connective tissue.
Journal of Investigative Dermatology, 66(2), 59–79. https://doi.org/10.1111/1523-1747.ep12481404
​
Wang, X. et al. (2018). A three-dimensional collagen-elastin scaffold for heart valve tissue
engineering. Bioengineering, 5(3). https://doi.org/10.3390/bioengineering5030069
​
Wang, Y., Hahn, J., & Zhang, Y. (2018). Mechanical Properties of Arterial Elastin With Water Loss. Journal of
biomechanical engineering, 140(4), 0410121–0410128. https://doi.org/10.1115/1.4038887
​
Wenger, M. P. E., Bozec, L., Horton, M. A., & Mesquida, P. (2007). Mechanical properties of collagen fibrils.
Biophysical Journal, 93(4), 1255–1263. https://doi.org/10.1529/biophysj.106.103192
​
Wu, J. J., Dutson, T. R., and Carpenter, Z. L. (1981). Effect of post-mortem time and temperature on the release of
lysosomal enzymes and their possible effect on bovine connective tissue components of muscle, Journal of Food
Science, 46, 1132.
​
Wu, M. (2020, September 11). Biochemistry, collagen synthesis. https://www.ncbi.nlm.nih.gov/books/NBK507709/
​
Wynnyckyj, C., Willett, T. L., Omelon, S., Wang, J., Wang, Z., & Grynpas, M. D. (2010). Changes in bone fatigue
resistance due to collagen degradation. Journal of Orthopaedic Research, 29(2), 197–203.
https://doi.org/10.1002/jor.21228
​
Zayas J.F. (1997) Solubility of Proteins. In: Functionality of Proteins in Food. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-59116-7_2
​
Zeng, Q., Macri, L. K., Prasad, A., & Clark, R. A. F. (2011). Comprehensive Biomaterials (Vol. 5, pp. 467–499).
Elsevier. https://www.sciencedirect.com/science/article/pii/B9780080552941001860#bib0300
​
Zeng, Q., Macri, L. K., Prasad, A., Clark, R. A. F., Zeugolis, D. I., Hanley, C., Garcia, Y., & Pandit, A. (n.d.).
Comprehensive Biomaterials (5th ed., pp. 467–499). Elsevier. Retrieved March 14, 2021, from
https://www.sciencedirect.com/science/article/pii/B9780080552941001860#bib0110
​
Zhang, Y., Yan, F., Yue, W., Mao, G., Gao, K., Zuo, Z., Zhang, Y., & Lu, H. (2015). Chitosan-collagen porous
scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke. Neural Regeneration
Research, 10(9), 1421. https://doi.org/10.4103/1673-5374.163466
​
Zhao, Y., Eng, G., Lee, B. W., Radisic, M., & Vunjak-Novakovic, G. (2020). Cardiac tissue engineering.
In Principles of Tissue Engineering (pp. 593–616). Elsevier. http://dx.doi.org/10.1016/b978-0-12-818422-6.00033-
2
​
Zhao, Y., Eng, G., Lee, B. W., Radistic, M., & Vunjak-Novakovic, G. (2020). Principles of tissue engineering (pp.
596–616). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780128184226000332